GMV

НОВОЕ ПОКОЛЕНИЕ

МУЛЬТИЗОНАЛЬНЫХ

СИСТЕМ

КОНДИЦИОНИРОВАНИЯ

Содержание

I. Компания GREE	5
II. Что такое GMV?	9
1. GMV – мультизональная система кондиционирования	
нового поколения	10
2. Технические особенности	11
2.1. Схема размещения блоков, длина трассы и перепады высот	12
2.2. Компрессор Digital Scroll с цифровым управлением	14
2.2.1. Устройство компрессороа Digital Scroll	14
2.2.2. Принцип работы компрессора Digital Scroll	14
2.2.3. Порядок изменения производительности	16
3. Преимущества мультизональной системы	17
3.1. Простота и надежность	17
3.2. Экономия места	17
3.3. Высокая степень энергетической эффективности	18
3.4. Точность поддержания температуры	18
3.5. Компрессор с цифровым управлением	19
3.6. Электромагнитная совместимость	19
3.7. Встроенный электронный терморегулирующий вентиль	19
3.8. Универсальное управление внутренними блоками	19
3.9. Самодиагностика с выводом кодов ошибок	19
3.10. Интеграция в систему диспетчеризации здания «Умный дом»	19
III. Наружные блоки	20
1. Модели наружных блоков	21
1.1. Условное обозначение наружных блоков	23
	0.1
IV. Внутренние блоки	24
1. Типы и модели внутренних блоков	25
1.1. Условное обозначение внутренних блоков	26
1.2. Внутренние блоки настенного типа	27
1.3. Внутренние блоки кассетного типа	28
1.4. Внутренние блоки канального типа	29
1.5. Внутренние блоки колонного типа	30

V. Система управления	31
1. Управление системой GMV	32
1.1. Индивидуальное управление	32
1.2. Централизованное управление	33
2. Управление системой и удаленный мониторинг	
посредством персонального компьютера	36
VI. Примеры установки и размещения	37
1. Примеры установки размещения системы GMV	38
1.1. Коттедж	39
1.2. Ресторан	40
1.3. Офис банка	41
1.4. Торговый центр	42
VII. Технические характеристики	43
1. Технические характеристики наружных блоков	44
2. Технические характеристики внутренних блоков	45
2.1. Внутренние блоки настенного типа	45
2.2. Внутренние блоки кассетного типа	46
2.3. Внутренние блоки канального типа	47
2.4. Внутренние блоки колонного типа	48

I КОМПАНИЯ GREE

МИРОВОЙ КЛИМАТ ОТ КОМПАНИИ GREE

Компания GREE ELECTRIC APPLIENCES, Inc. основана в 1991 г. в Гонконге. В 1997 году, после вхождения Гонконга в состав Китая, GREE получила выход на самый большой в мире – китайский рынок климатической техники, что способствовало ускоренным темпам развития компании.

В настоящее время компания GREE выпускает более двух тысяч различных моделей кондиционеров, имеет четыре завода, расположенные на территории Китая и Бразилии (самое крупное производство находится в Джухае), а также новейший научно-исследовательский центр в Джухае.

Благодаря объемам и динамике производства, сегодня каждый восьмой кондиционер в мире сделан на заводах GREE. В 2005 году компания увеличила производство до 10 млн. кондиционеров. И это далеко не предел.

В отлично оборудованных цехах трудятся восемнадцать тысяч высококвалифицированных сотрудников, включая восемьсот инженеров. Две тысячи специалистов научно-исследовательского центра проводят

GHAV

регулярные испытания каждого кондиционера в ультрасовременных высокотехнологичных лабораториях и специальных камерах, проверяя работу техники GREE при температурных режимах от 30-ти градусов мороза до 60-ти градусов жары, измеряя ее шумовые характеристики, проводя исследования по электромагнитной совместимости кондиционеров с другими бытовыми приборами и по их безопасности.

Специально разработанная компанией программа GLOBAL QUALITY CONTROL, гарантирует глобальный контроль качества производства кондиционеров GREE. Контроль включает в себя стопроцентное тестирование всех узлов и комплектующих, тщательное соблюдение технологии сборки и обязательное испытание каждого кондиционера, сходящего с конвейера. В рамках этой программы компания внимательно отслеживает и дальнейшую судьбу выпускаемого оборудования по цепочке – проектирование, монтаж, сервисное обслуживание. Вся эта работа нацелена на сохранение главного «козыря» компании – качества, надежности и долговечности выпускаемого оборудования.

Сегодня GREE уверенно приближается к абсолютному лидерству в отрасли. Компания официально признана компанией №1 в Китае, является

Ī

обладателем более пятидесяти престижных национальных и международных призов в том числе уникальной награды «Золотая звезда», ежегодно вручаемой всемирной организацией World Quality Commitment и «Платиновая звезды» Международной Конвенции International Convention Quality Summit.

Не останавливаясь на достигнутом, GREE уверенно продвигается на рынки Западной Европы, Северной и Южной Америки, занимает 20% европейского рынка климатического оборудования, ежегодно удваивает свой экспорт на рынок США и постоянно увеличивает продажи в Латинской Америке и на Ближнем Востоке.

Продолжая наращивать обороты, компания GREE ежегодно предлагает растущей армии своих потребителей новые, интересные и более совершенные модели. Сегодня GREE производит все типы климатической техники: оконные и настенные бытовые сплит-системы, высококачественные полупромышленные напольно-потолочные, кассетные, колонные и канальные агрегаты и уникальные мультизональные системы GMV.

II 4TO TAKOE GMV?

1. GMV – мультизональная система кондиционирования нового поколения

GMV (GREE Multi Variable) – мультизональная система нового поколения, созданная на базе передовой технологии Digital Scroll.

Система GMV позволяют кондиционировать до 32 помещений, используя всего лишь один наружный блок. При этом можно задать собственные параметры температуры для каждого из помещений. GMV предлагает различные типы внутренних блоков: настенные, напольные, кассетные, канальные в диапазоне мощности от 2 до 12 кВт. GMV может подключаться в систему диспетчеризации здания и обладает совершенной системой самодиагностики.

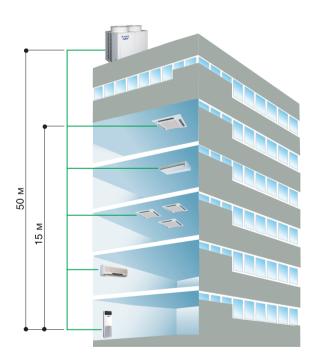
GMV – идеальное решение как для офисных зданий, так и для владельцев больших домов или коттеджей, фасады которых не будут испорчены россыпью наружных блоков кондиционеров.

2. Технические особенности

Система GMV собирается, словно конструктор, из отдельных модулей, причем допускаются самые широкие комбинации различных типов внутренних блоков.

С помощью одного наружного блока GMV, расположенного на чердаке, крыше или вообще за пределами здания, можно кондиционировать до 32 различных помещений.

Если одного наружного блока недостаточно, то объединение нескольких блоков в группы без дополнительных модульных приставок позволяет не только упростить и ускорить монтажные работы, но и дает возможность в будущем легко расширять систему.

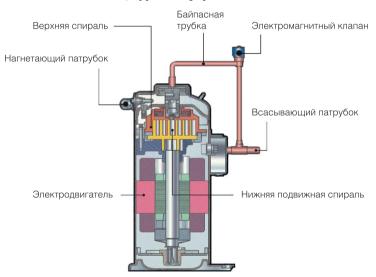

2.1. Схема размещения блоков, длина трассы и перепады высот

Общая протяженность трубопроводов может достигать 250 м.

Максимальная удаленность внутреннего блока от наружного – 125 м.

Если наружный блок установлен выше внутренних, то максимальный перепад высот между наружным и внутренними блоками – 50 м. Если внутренние блоки расположены выше наружного, то перепад высот составляет 40 м.

Максимальный перепад высот между внутренними блоками –15 м.


Параметр	Обозначение на схеме	Величина параметра, м	
Общая эквивалентная д	$L_{06.} = L_{1}+L_{2}+L_{3}+L_{4}+L_{5}+L_{6}+L_{7} +a+b++i+j$	250	
Максимальная длина трассы от	действительная		100
наружного блока до наиболее удаленного внутреннего блока	эквивалентная	$L_x = L_1 + L_3 + L_4 + L_5 + L_6 + j$	125
Максимальная эквивален трассы от первого разветвите удаленного внутренне	еля до наиболее	$L_y = L_3 + L_4 + L_5 + L_6 + j$	50
Максимальный перепад высот между внутренним и наружным	Наружный блок выше внутреннего	н	50
блоками	Наружный блок ниже внутреннего	''	40
Максимальный перепа между внутренними б	h	15	

2.2. Компрессор Digital Scroll с цифровым управлением

2.2.1. Устройство компрессора Digital Scroll

В системе GMV применяется компрессор переменной производительности с цифровым управлением. Производительность компрессора может изменяться в диапазоне от 10 до100%.

Устройство компрессора DIGITAL SCROLL с цифровым управлением

2.2.2. Принцип работы компрессора Digital Scroll

Основными элементами компрессора, которые позволяют регулировать производительность, являются электромагнитный клапан и верхняя спираль компрессора (см. рисунок п. 2.2.1).

При подаче сигнала на электромагнитный клапан, он открывается. Над верхней спиралью компрессора создается разряжение, и она смещается вверх.

Уменьшение площади контакта между верхней и нижней спиралями снижает производительность. Компрессор находится в состоянии разгрузки.

Если сигнал на клапан не подается, то клапан закрыт, площадь контакта между спиралями максимальная и соответственно производительность увеличивается.


Компрессор находится в состоянии нагрузки.

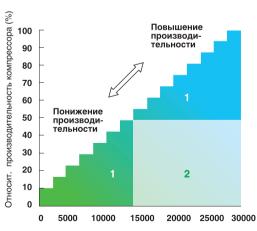
Перераспределение времени разгрузки и нагрузки в диапазоне управления компрессора изменяет его производительность.

Например, если общая мощность составляет 15 кВт (период управления 20 сек), то при выходной мощности 7,5 кВт (50% общей мощности) время загрузки будет составлять 50% от периода управления, т.е. загрузка в течение 10 сек. и разгрузка в течение 10 сек.

Если выходная мощность равна 3 кВт (20% общей мощности), то время загрузки составит 20% от времени периода управления, т.е. загрузка в течение 4 сек. и разгрузка в течение 16 сек.

График работы компрессора в зависимости от положения электромагнитного клапана

Зависимость выходной мощности от распределения времени разгрузки/загрузки компрессора.


2.2.3. Порядок изменения производительности

В наружных блоках мощностью до 20 кВт установлен один компрессор Digital Scroll с цифровым управлением. Его производительность изменяется при изменении тепловой нагрузки на внутренних блоках.

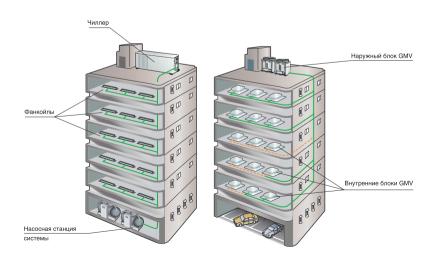
В наружных блоках мощностью 20 кВт и более кроме компрессора Digital Scroll установлен компрессор постоянной производительности. Работа компрессоров зависит от тепловой нагрузки на внутренних блоках. Например, если для системы производительностью до 30 кВт тепловая нагрузка на внутренних блоках изменяется в диапазоне от 0 до 15 кВт (50% от номинальной), то работает только компрессор Digital Scroll. При возрастании нагрузки до 15 кВт (50%) включается компрессор постоянной мощности, и при дальнейшем увеличении нагрузки работают оба компрессора одновременно.

Работа компрессоров системы GMV в системе мощностью 30 кВт

Двухкомпрессорная система 30 кВт

Общая произв. работающих внутренних блоков, Вт

 ^{1 –} спиральный компрессор с цифровым управлением
 2 – спиральный компрессор фиксированной производительности


3. Преимущества мультизональной системы GMV

3.1. Простота и надежность

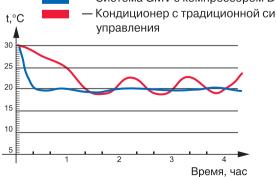
- Основное преимущество системы GMV фирмы GREE это простота конструкции и технического обслуживания, что является залогом надежности и долговечности при эксплуатации.
- Возможность размещения внутренних блоков на удаленном расстоянии друг от друга и от наружного блока позволяет охватывать одной системой большие площади кондиционируемого здания.
- Возможно-допустимые перепады высот позволяют размещать наружный блок на крыше или подсобном помещении здания, при этом не нарушается архитектурный облик здания.

3.2. Экономия места

По сравнению с системой «чиллер-фанкойл» GMV занимает меньше места. При установке системы высвобождаются помещения, которые могут быть использованы для различных хозяйственных нужд.

3.3. Высокая степень энергетической эффективности

По сравнению с инверторной системой мультизональная система GMV обладает большим коэффициентом энергетической эффективности (EER).



3.4. Точность поддержания температуры

Система быстро доводит температуру воздуха в помещении до необходимой и поддерживает ее с точностью до $\pm 0.5^{\circ}$ С от заданного значения.

График изменения температуры в помещении,

3.5. Компрессор с цифровым управлением

Цифровое управление компрессором исключает постоянные включения-выключения электродвигателей компрессоров – основную причину износа. Такое решение существенно увеличивает надежность системы и, примерно, на 30% сокращает потребление электроэнергии. Кроме того, подобное управление позволяет точно поддерживать заданные параметры.

3.6. Электромагнитная совместимость

Система не создает электромагнитных помех, так как регулирование производительности, в отличие от инверторных систем осуществляется за счет механического перемещения спирали компрессора Digital Scroll

3.7. Встроенный электронный терморегулирующий вентиль

В отличие от других мультизональных систем GMV имеет встроенный во внутренний блок электронный терморегулирующий вентиль (ЭТРВ). Он автоматически регулирует объемный расход хладагента в соответствии с изменением нагрузки и установочной температуры в помещении.

3.8. Универсальное управление внутренними блоками

Управление системой возможно как индивидуальное каждого внутреннего блока так централизованное посредством центрального пульта управления или персонального компьютера.

3.9. Самодиагностика с выводом кода ошибок

Система самодиагностики позволяет быстро найти и устранить неисправность, ориентируясь по коду ошибки.

3.10. Интеграция в систему диспетчеризации здания «Умный дом»

К уже перечисленным «плюсам» мультизональных систем GMV нужно добавить возможность их подключения к системе диспетчеризации здания или интеграцию в систему «Умный дом».

III НАРУЖНЫЕ БЛОКИ

1. Модели наружных блоков

Наружные блоки системы GMV производительностью от 10 до 62 кВт

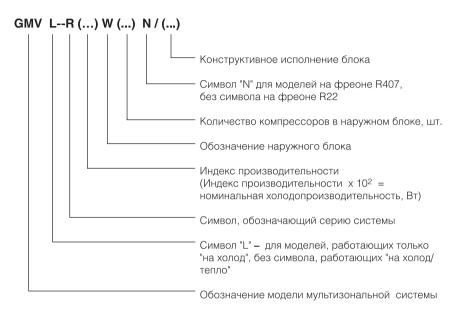
GMV(L)-R100/W, GMV(L)-R120/W, GMV(L)-R150/W/A

GMV(L)-R200/W2

GMV(L)-R250/W2, GMV(L)-R300/W2

GMV(L)-R420W3/A, GMV(L)-R560W4/A, GMV(L)-R620W4/A

Таблица моделей наружных блоков GMV:


Модель	Производительность, Вт		Габаритные размеры	Мах количество	Вес, кг	
	Холод	Тепло	(ШхГхВ),мм	внутренних блоков, шт.		
GMV(L) - R100W	10000	11000	1100x338x1220	5	140	
GMV(L) - R120W	12000	13000	1100x338x1220	5	140	
GMV(L) - R150W/A	15000	16800	1100x338x1220	8	140	
GMV (L) - R200W2	20000	22500	880x840x1450	10	250	
GMV (L) - R250W2	25000	28000	1350x700x1300	13	250	
GMV (L) - R300W2	30000	33500	1350x700x1500	16	300	
GMV (L) - R420W3/A	42000	46000	1980x840x1675	28	560	
GMV (L) - R560W4/A	56000	60000	1980x840x1675	32	600	
GMV(L) - R620W4/A	62000	66000	1980x840x1675	32	600	

Примечание.

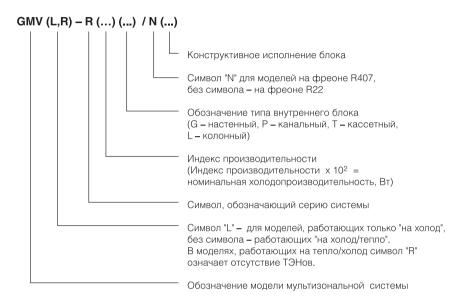
- К одному наружному блоку в зависимости от его мощности возможно подключение от 2-х до 32-х внутренних блоков, при этом их суммарная номинальная производительность должна составлять от 50% до 135% мощности наружного блока.
- Максимальное количество внутренних блоков определяется мощностью наружного блока.

1.1. Условное обозначение наружных блоков

Пример условного обозначения наружного блока:

GMV-R300W2 – Наружный блок мультизональной системы серии R, с двумя компрессорами, работающий на фреоне R22 в режиме холод/тепло с номинальной мощностью 30000Вт

IV ВНУТРЕННИЕ БЛОКИ


1. Типы и модели внутренних блоков

Тип		25	30	35	40	45	50	60	70	80	100	120
НАСТЕННЫЙ	Холод	GMVL- R25G/D	-	GMVL- R35G/D	-	-	GMVL- R50G/D	-	-	-	-	-
	Холод/ тепло	GMV(R)- R25G/D	-	GMV(R)- R35G/D	-	-	GMV(R)- R50G/D	-	-	-	-	-
КАССЕТНЫЙ	Холод	-	-	-	-	-	GMVL- R50T/D	-	GMVL- R70T/D	-	GMVL- R100T/ D	GMVL- R120T/D
	Холод/ тепло	-	-	-	-		GMV(R)- R50T/D	-	GMV(R)- R70T/D		GMV(R)- R100T/D	GMV(R)- R120T/D
КАНАЛЬНЫЙ	Холод	GMVL- R25P/D	-	GMVL- R35P/D	-		GMVL- R50P/D	-	GMVL- R70P/D	-	GMVL- R100P/D	GMVL- R120P/D
КАНАЛЬНЫИ	Холод/ тепло	GMV(R)- R25P/D	-	GMV(R)- R35P/D	-	-	GMV(R)- R50P/D	-	GMV(R)- R70P/D	-	GMV(R)- R100P/D	GMV(R)- R120P/D
колонный	Холод	-		-	-	-	GMVL- R50L/D	-	GMVL- R70L/D	-	GMVL- R100L/D	GMVL- R120L/D
	Холод/ тепло	-		-	-		GMV- R50L/D		GMV- R70L/D	-	GMV- R100L/DS	GMV- R120L/D

[•] Четыре типа и 34 модели внутренних блоков (настенные, кассетные, канальные и колонные) различной мощности позволяют скомпоновать систему для различного типа зданий.

1.1. Условное обозначение внутренних блоков

Пример условного обозначения внутреннего блока:

GMVL-R70 P/NA - Внутренний блок канального типа мультизональной системы серии R, работающий на фреоне R407C только в режиме охлаждения с номинальной холодопроизводительностью 7000 Вт.

1.2. Внутренние блоки настенного типа

- Внутренние блоки настенного типа, кроме моделей GMVL и GMVR, имеют встроенный трубчатый электронагреватель, что позволяет ускорить процесс нагрева воздуха в помещении при работе «на тепло».
- В блоках настенного типа установлены механические сетчатые фильтры.
- В блоки дополнительно могут быть установлены угольные, электростатические или криокаталитические фильтры, которые поставляются отдельно.

• Работа жалюзи в автоматическом режиме позволяет равномерно распределять воздушный поток в помещении.

Модель	Производит	ельность, Вт	Габаритные размеры	Bec,	
МОДЕЛЬ	Холод	Тепло+ТЭН	(ШхГхВ), мм	КГ	
GMV(L) - R25 G/D	2500	3000+400			
GMVR - R25 G/D	2500	3000	830x189x285	11	
GMV(L) - R35G/D	3500	4000+400	630x169x263		
GMVR - R35G/D	3500	4000			
GMV(L) - R50G/D	5000	6200+400	907x195x290	12	
GMVR - R50G/D	5000	6200	907 X 1908290	12	

Примечание.

1.3. Внутренние блоки кассетного типа

- Внутренние блоки кассетного типа мультизональной системы имеют 4-х стороннюю раздачу воздуха и встроенный дополнительный трубчатый электронагреватель.
- Встроенный дренажный насос автоматически удаляет конденсат из поддона блока.

Модель	Производите	ельность, Вт	Габаритные размеры	Вес, (корпус/панель), кг	
модель	Холод	Тепло+ТЭН	(ШхГхВ), мм		
GMV(L) - R50 T/D	5000	5500+700	корпус 840x840x190	25/3.5	
GMVR - R50 T/D	5000	5500	панель 950х950х60	23/3.3	
GMV(L) - R70 T/D	7000	7500+1400	корпус 840x840x240	30/6.5	
GMVR - R70 T/D	7000	7500	панель 950х950х60		
GMV(L) - R100 T/D	10000	11000+2100			
GMVR - R100 T/D	10000	11000	корпус 840x840x320	38/6.5	
GMV(L) - R120 T/D	12000	12500+2100	панель 950х950х60	30/0.3	
GMVR - R120 T/D	12000	12500			

Примечание.

1.4. Внутренние блоки канального типа

• Внутренние блоки канального типа мощностью от 2,5 до 5 кВт со статическим давлением до 50 Па устанавливаются в помещениях где требуется подключение воздуховодов большой длины.

Модель	Производительность, Вт		Габаритные размеры	Bec,	Расход воздуха,	Статическое давление,			
Модель	Холод	Тепло+ТЭН	(ШхГхВ), мм	КГ	м ³ /ч	Па			
GMV(L) - R25 P/D	2500	3000+800	875x600 x220			450	0/20*		
GMVR - R25 P/D	2500	3000				875x600	27	450	0/20
GMV(L) - R35 P/D	3500	3800+800				21	570	0/20*	
GMVR - R35 P/D	3500	3800			570	0/20			
GMV(L) - R50 P/D	5000	5800+1500	975x600	36	840	15/40*			
GMVR - R50 P/D	5000	5800	x270						
GMV(L) - R70 P/D	7000	8000+2100	1160x675	55	1400	50			
GMVR - R70 P/D	7000	8000	x300	33	1400	30			
GMV(L) - R100 P/D	10000	11000+3600		57	2000	50			
GMVR - R100 P/D	10000	11000	1160x675 x300	57	2000	50			
GMV(L) - R120 P/D	12000	12000+3600		75	2000	50			
GMVR - R120 P/D	12000	13000		75	2000	50			

^{*} Возможность выбора величины статического давления при монтаже кондиционера.

Примечание.

1.5. Внутренние блоки колонного типа

- Внутренние блоки колонного типа оснащены дополнительным трубчатым электронагревателем.
- Вертикальные и горизонтальные жалюзи позволяют равномерно распределять воздушный поток в различных направлениях.

Модель	Производит	ельность, Вт	Габаритные размеры	Вес, кг	
МОДЕЛЬ	Холод	Тепло+ТЭН	(ШхГхВ), мм		
GMV(L) - R50 L/D	5000	5800+1200			
GMVR - R50 L/D	5000	5800	500x300x1660	43	
GMV(L) - R70 L/D	7000	8000+2550	300x300x1000	43	
GMVR - R70 L/D	7000	8000			
GMV(L) - R100 L/D	10000	11000+3500		55	
GMVR - R100 L/D	10000	11000	E40v200v17E0	55	
GMV(L) - R120 L/D	12000	12000+3500	540x380x1750	58	
GMVR - R120 L/D	12000	13000		56	

Примечание.

V СИСТЕМА УПРАВЛЕНИЯ

1. Управление системой GMV

• В мультизональной системе GMV предусмотрено индивидуальное управление каждого внутреннего блока, а также централизованное управление с центрального пульта или персонального компьютера.

1.1. Индивидуальное управление

- Внутренние блоки настенного, кассетного и колонного типа управляются при помощи инфракрасного пульта дистанционного управления.
- Управление внутренних блоков канального типа осуществляется при помощи проводного дистанционного пульта.

Инфракрасный пульт дистанционного управления

Проводной пульт дистанционного управления

1.2. Централизованное управление

Центральный пульт ZJ7011 обеспечивает три режима управления системой:

- а) «Central Control» Централизованное управление.
- б) «Single Control» Индивидуальное управление.
- в) «Select Control» Управление отдельной группой.

В режиме «Central Control» параметры работы задаются одновременно для всех внутренних блоков системы.

В режиме «Single Control» параметры работы задаются для отдельного внутреннего блока.

В режиме «Select Control» параметры работы задаются для сформированных групп внутренних блоков.

Режим «Select Control» имеет два варианта управления:

- а) Задание параметров работы для временно сформированной группы внутренних блоков.
- б) Заданной параметров работы для сформированной группы внутренних блоков с устойчивой связью.

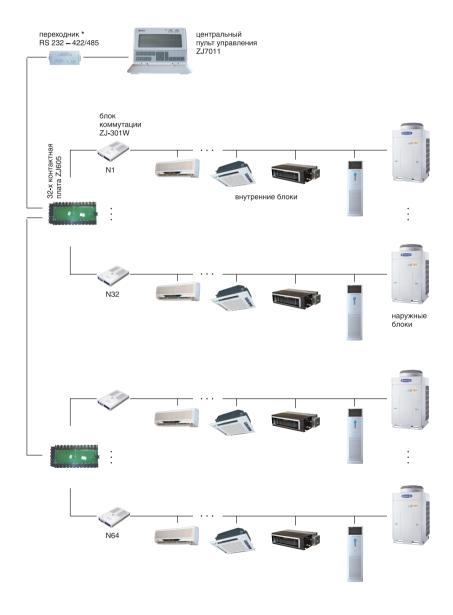
Для сгруппированных или отдельных внутренних блоков с пульта ZJ7011 возможно задание необходимой температуры и режимов работы:

- «AUTO» автоматический режим
- «COOL» режим охлаждения
- «DRY» режим осушения
- «НЕАТ» режим нагрева
- «FAN» режим вентиляции

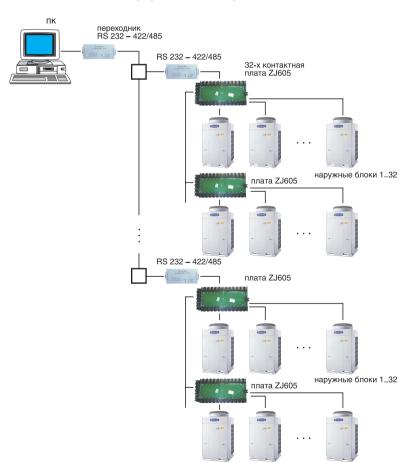
На пульте имеется возможность программирования включения внутренних блоков по таймеру в заданный режим работы в определенное время (число, месяц, день недели, часы, минуты).

- К одному центральному пульту управления ZJ7011 возможно подключение не более 64 наружных блоков.
- С одного центрального пульта возможно управление не более чем 1024 внутренними блоками.
- На ЖК-дисплее пульта высвечиваются установленные и текущие параметры системы.
- При возникновении неисправности на дисплее высвечивается код ошибки.
- Для подключения к центральному пульту одного наружного блока применяется блок коммутации ZJ301W.
- Если количество наружных блоков более 32, то в схему необходимо подключить переходник RS232 422/485.

Переходник RS232 - 422/485


32-х контактная плата ZJ605

Блок коммутации ZJ301W


Схема управления с центрального пульта управления ZJ7011

2. Управление системой и удаленный мониторинг посредством персонального компьютера

- Для удаленного мониторинга системы необходим персональный компьютер, отвечающий требованиям руководства по программному обслуживанию системы и программа, которая поставляется производителем на дисках.
- Компьютер системы осуществляет текущий мониторинг внутренних и наружных блоков.
 - К компьютеру возможно подключение до 160 наружных блоков.

Схема управления посредством ПК

VI ПРИМЕРЫ УСТАНОВКИ И РАЗМЕЩЕНИЯ СИСТЕМЫ

1. Примеры установки и размещения системы GMV

Система GMV удачно вписывается в структуру любого здания, будь то многоэтажный современный офис, отель, ресторан, комфортабельный коттедж или крупный торговый центр.

Выбор места установки наружного блока – на крыше или вообще вне здания, – зависит от протяженности трассы и конструкции кровли. Так, для сокращения длины трассы в девятиэтажном офисе, целесообразно установить наружный блок GMV на плоской крыше строения, а для двухэтажного коттеджа лучше подойдет размещение во дворе.

Для каждого конкретного объекта мощность наружного блока подбирается индивидуально, в зависимости от количества внутренних блоков, суммарная мощность которых не должна превышать мощности наружного агрегата.

Разнообразие внутренних блоков дает возможность выбрать наиболее подходящий тип кондиционера для каждого конкретного помещения. При высоте потолков до 3-х метров идеально подходят настенные сплитсистемы GREE, отличающиеся прекрасным дизайном, крайне низким уровнем шума и простотой в эксплуатации. В зале ресторана, где высота потолка достигает 6-ти метров, предпочтительнее установить кондиционер кассетного или колонного типа. А для гостиничных номеров целесообразнее использовать канальный кондиционер.

Каждый внутренний блок управляется индивидуально с пульта ДУ, а вся система подключена к центральному пульту управления или к компьютеру, обеспечивая слаженную и бесперебойную работу GMV.

1.1. Коттедж

На первом этаже коттеджа расположена просторная гостиная, две спальни, столовая и кухня.

Колонный кондиционер мощностью 7 кВт с функцией «живая картинка» прекрасно вписывается в интерьер современной гостиной, а кондиционер кассетного типа мощностью 5 кВт обеспечивает равномерную подачу воздуха в спальне.

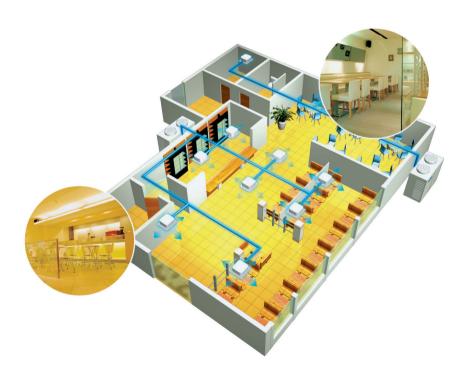
Высота потолка в небольшой столовой позволяет использовать в этом помещении канальный кондиционер мощностью 2,5 кВт – трасса воздуховода надежно скрыта за декоративными панелями подвесного потолка, а воздухораспределительная решетка располагается прямо над обеденной зоной.

Любая комната отдыха требует бесшумной работы кондиционера, поэтому в детской спальне лучше всего использовать одну из моделей настенных кондиционеров GREE мощностью от 2,5 до 3,5 кВт.

Мощность наружного блока составляет 25 кВт и ее вполне хватает для кондиционирования второго этажа коттеджа.

Наружный блок установлен рядом с коттеджем с «глухой» стороны здания. Каждый внутренний блок управляется с индивидуального пульта дистанционного управления, а вся система GMV подключена к компьютеру.

1.2. Ресторан


Специфической особенностью кафе и ресторанов по-прежнему остается наличие кухонной зоны с большим выделением тепла, служебных помещений и залов для посетителей.

Для равномерного охлаждения воздуха в залах ресторана установлены кондиционеры кассетного типа мощностью от 5 до 7 кВт.

Разветвленная система воздуховода позволяет расположить внутренние блоки над барной стойкой, столиками для гостей и танцевальной зоной

Два наружных блока мощностью 40 и 15 кВт установлены на бетонных площадках за пределами здания.

Каждый внутренний блок управляется с пульта ДУ, а вся система GMV подключена к пульту центрального управления.

1.3. Офис банка

При проектировании системы воздухораспределения в современных банках и офисах важную роль играют функциональные особенности каждого помещения: в просторном кассовом зале и в комнате для переговоров требуется большой объем подачи охлажденного или нагретого воздуха, в то время как в кабинете руководителя достаточно одного настенного блока минимальной мощности.

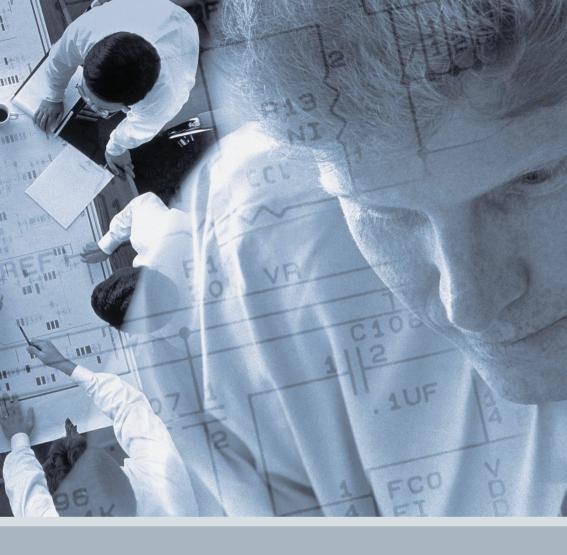
Для наиболее эффективного распределения воздуха по всему объему помещения на данном объекте установлено пять кондиционеров кассетного типа мощностью 7 кВт каждый, два «кассетника» (по 7 кВт) отведены в комнату для переговоров и один (3 кВт) – в кабинет руководителя.

Наружный блок мощностью 62 кВт расположен на крыше здания.

Каждый внутренний блок управляется с индивидуального пульта ДУ. Вся система GMV подключена к компьютеру.

1.4. Торговый центр

Внушительная площадь торговых центров позволяет ежедневно принимать десятки тысяч посетителей, поэтому эффективное кондиционирование воздуха является здесь одним из важнейших условий комфорта.


Для уменьшения количества внутренних блоков в данных торговых залах установлены три канальных кондиционера по 12 кВт каждый и два кондиционера кассетного типа по 7 кВт.

С помощью специальных коллекторов к каждому торговому сектору проведены воздуховоды с воздухораспределительными решетками.

Наружный блок мощностью 62 кВт установлен за пределами здания.

Вся система GMV координируется с помощью компьютера.

VII ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1. Технические характеристики наружных блоков

Модель		GMV(L)- R100W	GMV(L)- R120W	GMV(L)- R150W/A	GMV(L)- R200W2	GMV(L)- R250W2	GMV(L)- R300W2	
Холодо- производительность	Вт	10000	12000	15000	20000	25000	30000	
	BTU	34100	40920	51200	68300	85300	102400	
Тепло производительность	Вт	11000	13000	16800	22500	28000	33500	
производительность	BTU	37500	45000	57300	76800	95500	112600	
Уровень шума	dB(A)	58			62 64		4	
Масса фреона R22	КГ	8		12	16	17.5	20	
Габаритные размеры ШхГхВ	ММ	1100x338x1220		220	880x840 x1450	1350x700 x1300	1350x700 x1500	
Тип компрессора		Scroll (переменной мощности) Scroll (перемен. мощност Scroll (постоян. мощност						
Степень защиты		IPX4						
Тип климатического исполнения		T1						
Межблочные соединитель- ные трубки	Жидк.	1/2"						
	газовая	3/4" 7		7/8"	1"	1,1/8"		
	Способ подключ.	Развальцовка			Пайка			
Вес, нетто	КГ	140			250		300	

Примечание

Модель типа GMVL (только охлаждение) не имеет параметра номинальной теплопроизводительности.

2. Технические характеристики внутренних блоков

2.1. Внутренние блоки настенного типа

Модель		GMV(L,R)- R25G/D	GMV(L,R)- R35G/D	GMV(L,R)- R50G/D		
Холодо-	Вт	2500	3500	5000		
производительность	BTU	8525	11935	17050		
Тепло-	Вт	3000	4000	6200		
производительность	BTU	10230 13640		21142		
Мощность ТЭНа	Вт		400			
Рабочий ток ТЭНа	Α		1,82			
Воздухо- производительность	м³/ч	360 500		700		
Уровень шума	dB(A)	31 35		46		
Наружный диаметр дренажного отвода	ММ					
Габаритные размеры (Ш х В х Г)	ММ	830x285x189		907x290x195		
Bec	КГ	11		12		
Трубопровод межблочный	жидк.	1	/4"	3/8"		
грусспровод межолочный	газ.	3/8"		/2"		
Источник питания		220V 50Hz				
Мощность электродвигателя	Вт	26,7 36,7		50		
Кабель питания,	Холод	0,75x3				
мм² х n (n- число жил)	Тепло	1,5x3				

- 1. Для моделей GMVL параметры номинальная теплопроизводительность, мощность ТЭНа и рабочий ток ТЭНа отсутствуют.
- 2. В моделях GMVR-R... отсутствует ТЭН
- 3. Площадь поперечного сечения кабеля (с резиновым покрытием типа YZW) дана из расчета длины не более 15м. При длине кабеля свыше 15 м площадь поперечного сечения должна быть увеличена во избежание перегрузок по току и возгорания кабеля.

2.2. Внутренние блоки кассетного типа

Модель	GMV(L,R) - R50T/D	GMV(L,R) - R70T/D	GMV(L,R) - R100T/D	GMV(L,R) - R120T/D		
Холодопроизводительность	W	5000	7000	10000	12000	
холодопроизводительность	BTU	17050	23870	34100	40920	
Теплопроизводительность	Вт	5500	7500	11000	12500	
теплопроизводительность	BTU	18755	25575	37510	42625	
Воздухопроизводительность	М³/ч	680	1180	1860	1860	
Уровень шума	dB(A)	45	47	52		
Наружный диаметр дренажного отвода		∅30				
Межблочные	жидк.	3.	/8"	1/2"		
соединительные трубки	газ.	1/2"	5/8"	3/4"		
Размеры ШхГхВ		корпус 840х840х190 панель 950х950х60	корпус 840х840х240 панель 950х950х60	корпус 840x840x320 панель 950x950x60		
Масса Корпус / панель		25/3.5	30/6.5	38/6.5		
Источник питания		220V 50Hz		3N 380V 50Гц (тепло/холод) 220V 50Нz (только холод)		
Мощность электродвигателя Вт		35		50		
Ток эл. двигателя А		0	.6	0.8		
Кабель питания (мм² х n)	Холод	1.0x3				
n - число жил	Тепло	1.5x3				
Мощность ТЭНа Вт		700	1400 2100		00	
Рабочий ток ТЭНа	Α	3.19	6.38	3.1	9	

- 1. Для моделей GMVL параметры номинальная теплопроизводитель-ность, мощность ТЭНа и рабочий ток ТЭНа отсутствуют.
- 2. В моделях GMVR-R... отсутствует ТЭН
- 3. Площадь поперечного сечения кабеля (с резиновым покрытием типа YZW) дана из расчета длины не более 15 м. При длине кабеля свыше 15 м площадь поперечного сечения должна быть увеличена во избежание перегрузок по току и возгорания кабеля.

2.3. Внутренние блоки канального типа

Модель		GMV(L,R) - R25P/D	GMV(L,R) - 35P/D			GMV(L,R) -R100P/D	
Холодо- производительность	Вт	2500	3500	5000	7000	10000	12000
	BTU	8525	11935	17050	23870	34100	40920
Тепло-	Вт	3000	3800	5800	8000	11000	13000
производительность	BTU	10230	12958	19778	27280	37510	44330
Воздухо- производительность	М³/Ч	450	570	840	1400	2000	
Уровень шума	dB(A)	37	39	40	42	44	
Статическое давление	Pa	0 / 20 ")		15 / 40 ')	50		
	ширина, мм	875 975			1160		
Габаритные размеры	глубина, мм	600			675		
	высота, мм	22	20	270	300		
Трубопровод	жидк.	1/4"		3/8"		1/3	2"
межблочный	газ.	3/8" 1/2"		1/2"	5/8" 3/4"		4"
Наружный диаметр дренажного отвода	MM	2	:1	30			
Вес (нетто)	КГ	27		36	55	57	75
Источник питания		220B				3N 380B - тепло/холод 220B -только холод	
Мощность электродвигателя	Вт	20		70	150	225	
Кабель питания (мм² x n)	Холод			1.0 x 3			
n - число жил	Тепло	1.5x3 1.5x3		2.5x3	2.5x3	2.5	ix5
Мощность ТЭНа	Вт	800		1500	2100	3600	
Рабочий ток ТЭНа	Α	3.63		6.82	6.85	5.4	45

- 1. Для моделей GMVL параметры номинальная теплопроизводительность, мощность ТЭНа и рабочий ток ТЭНа отсутствуют.
- 2. В моделях GMVR-R... отсутствует ТЭН
- 3. Площадь поперечного сечения кабеля (с резиновым покрытием типа YZW) дана из расчета длины не более 15 м. При длине кабеля свыше 15 м площадь поперечного сечения должна быть увеличена во избежание перегрузок по току и возгорания кабеля.
- *) Приведены значения статического давления в состоянии поставки (первая цифра) и значение после переключения проводов в блоке питания (вторая цифра).

2.4. Внутренние блоки колонного типа

Модель	GMV(L,R) - R50 L/D	GMV(L,R) - R70 L/D	GMV(L,R) - R100 L/D	GMV(L,R) - R120 L/D		
Холодопроизводительность	Вт	5000	7000	10000	12000	
лолодопроизводительность	BTU	17050	23870	34100	40920	
Теплопроизводительность	Вт	5800	8000	11000	13000	
теплопроизводительность	BTU	19788	27280	37510	44330	
Воздухопроизводительность	М³/ч	800	900	1670	1500	
Уровень шума	Уровень шума dB(A)		45	48		
Наружный диаметр дренажного отвода	MM		Ø	30		
Трубопровод межблочный	жидк.	3/	8"	1/2"		
груоопровод межолочный	газ.	1/2" 5/8"		3/4"		
Размеры ШхГхВ мм		500 x 30	0 x 1660	540 x 380 x 1750		
Bec	КГ	43		55	58	
Источник питания		220 B		3N 380 B тепло/холод 220 B - только холод	3N 380 B	
Мощность электродвигателя	Вт	80	110	22	0	
Рабочая сила тока электродвигателя	Α	0.6 1.1		2.0	2.0	
Кабель питания (мм²х n)	Холод	1.0 x 3				
n - число жил	Тепло	1.5 x 3				
Мощность ТЭНа	Вт	1200	2550 3500		00	
Рабочий ток ТЭНа А		5.45	11.6	5.3	3	

- 1. Для моделей GMVL параметры номинальная теплопроизводительность, мощность ТЭНа и рабочий ток ТЭНа отсутствуют.
- 2. В моделях GMVR-R... отсутствует ТЭН.
- 3. Площадь поперечного сечения кабеля (с резиновым покрытием типа YZW) дана из расчета длины не более 15 м. При длине кабеля свыше 15 м площадь поперечного сечения должна быть увеличена во избежание перегрузок по току и возгорания кабеля.