DUCT TYPE SPLIT AIR CONDITIONER TECHNICAL SALES GUIDE

(GC201703

TTER CONDITIONERS GREE MAKING BETTER CONDITIONERS GREE MAKING BETTER CONDITIONERS GREE MAKING BETTER CONDITIONE

CONTENTS

1.Products	3
2.Nomenclature	6
3.Electrical Specifications	12
4.Fan Characteristics	12
5.Dimensional Data and Unit Installation Space Requirements	13
6.Requirements for Communication Mode	17
7.ACCESSORIES	18
8.Sales Areas	18

Products

1.1 Models List

Units	Model Name	Capa (kW/T	city on)	Ref		Appearance		
Series	Wodel Name	Cooling Heating		Outdoor	Indoor			
	FGR20Pd/DNa-X	20/5.6	22/6.16	R410A				
	FGR25Pd/DNa-X	25/7	27.5/7.7	R410A	0			
Duct Type	FGR30Pd/DNa-X	30/8.4	33/9.24	N 4 10A				
	FGR40Pd/D(2)Na-X	40/11.2	43/12.04	R410A	0			

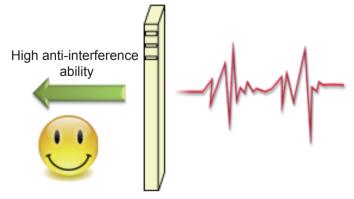
1.2 Nomenclature

$$\frac{\text{FG}}{1} \frac{\text{R}}{2} \frac{40}{3} \frac{\text{Pd}}{4} / \frac{\text{D}}{5} \frac{\text{Na}}{6} - \frac{\text{X}}{7} \frac{\text{(I)}}{8}$$

NO.	Description	Options
1	Ducted Type Air Conditioner	-
		Cooling only type-omitted
2	Unit type	Heat pump
		Auxiliary hot water plate and pipe type-W
3	Cooling capacity	Nominal cooling capacity (kW)
4	Frequency conversion system	Fixed frequency-omitted
4	Trequency conversion system	Frequency conversion-Pd
5	Design No.	Arranged based on A, B, C, D, and so on
		R22-omitted
6	Refrigerant	R407-N
O	Keingerani	R410a-Na
		Others to be applied for when they are used
7	Payer type	380-415V 3Ph \sim ,50Hz-X
/	Power type	(The unit to be exported must be expressed)
		Outdoor unit-(O)
8	Indoor and outdoor unit code	Indoor unit-(I)
		The entire unit is not expressed.

1.3 Features

1.3.1 Outdoor Unit


This series unit adopts side air discharge design, with compact size, decreasing installation environment limit greatly. Features for the complete unit system are as below:

(1) High Efficiency

The system adopts all DC motor, which greatly improves efficiency.

- ① High-efficient magnetic reluctance inverter compressor: High-efficient magnetic reluctance compressor is adopted to take advantage of the magnetic reluctance torque of compressor. Under the same output capacity, the efficiency can be improved by 5%.
- ② Advanced torque control technology: minimum current and maximum torque control technology adopts the most optimized control principle to realize maximum torque output with minimum current and reduce loss of motor winding and intelligent power module for higher energy efficiency.
- 3 Closed-loop start-up technology of compressor: Self-innovative closed-loop start-up control is applied to enable output torque follow with load torque, whose start-up current is small and start-up is more reliable.
- 180° sine wave DC variable speed technology: 180° current output waveform is smooth sine wave with small harmonic wave content, small torque pulsation, wide adjustable range and stable operation of motor, which can satisfy the temperature requirement in various occasion, save electricity greatly and ensure user's comfort in maximum.
- (2) Latest CAN Bus Communication

The latest communication way-CAN bus communication is adopted, which greatly improves antiinterference ability, precisely controls the indoor unit and improves the reliability of system. Conventional communication wire can be used to increase the flexibility of project installation.

(3) Long Connection Pipe and Big Height Difference

The connection pipe between indoor unit and outdoor unit can be as long as 50m. Project installation condition is wider while the limitation of installation distance is smaller. The max allowable height difference between indoor unit and outdoor unit is 30m.

(4) Wide Operation Range

The system can operate constantly and reliably in a wide temperature range(cooling: -7~48°C, heating: -15~24°C), which is not affected by atrocious environment.

(5) PID Intelligent Capacity Adjustment

The system applies the original technology of PID intelligent capacity adjustment, which quickly and precisely controls indoor ambient temperature according to set temperature, with small temperature fluctuation and great comfort.

1.3.2 Indoor Unit

◆ High Efficiency

DC inverter for efficiency and energy saving.

◆ High static pressure design

Static pressure can reach up to 250Pa, especially suitable for places in need of long distance airflow.

◆ Static pressure is adjustable

Static pressure can be adjusted manually or automatically. The unit is applicable for 0~250Pa static pressure.

◆ Less after-sales maintenance

The system fan adopts direct connection design, avoid the after-sales maintanence for replacing blet pulley.

◆ Intelligent filter cleaning reminding function

Monitor the change of motor current and rotation speed at real time; accurately judge the filth blockage of filter for real-time reminding.

1.4 Operation Range

	Indoo	or side	Outdoo	Outdoor side		
Test condition	DB(°C)	WB(°C)	DB(°C)	WB(°C)		
Nominal cooling	27	19	35	24		
Nominal heating	20		7	6		
Maximum cooling	32	23	48	26		
Low temp cooling	21	15	-7			
Maximum cooling	27		24	18		
Low temp heating	20		-15			

Technical Sales Guide Technical Sales Guide lechnical Sales Guide

Nomenclature

2.1 Product Data at Rated Condition

Models				Indoor Unit	FGR20Pd/DNa-X(I)	FGR25Pd/DNa-X(I)	
		Model	IS	Outdoor Unit	FGR20Pd/DNa-X(O)	FGR25Pd/DNa-X(O)	
			CII	Btu/h	68200	85300	
Nom	inal Capa	icity At	Cooling	kW	20	25	
	Rated ESI	P	Haatina	Btu/h	75100	93800	
			Heating	kW	22	27.5	
Pove	er Consun	antion	Cooling	kW	7.8	9.4	
1000	er Corison	прпоп	Heating	KYY	7.0	8.9	
P.,	nning Cur	ront	Cooling	Α	16.5	18.9	
KU	ming Cor	Tem	Heating	^	15.6	17.2	
		Refriç	gerant Type		R4	0α	
	Refr	igerant (Charge	kg	6.4	8.0	
		Power	Supply	Ph/V/ Hz	1/220,	/50/60	
			Туре		Centrifugal / Di	rect Connection	
			Air flow	CFM m³/h	2178	2472	
					3700	4200	
	_		Input Power	W	750	800	
	Fan	Ru	Running Current		4.1	4.4	
			Rated ESP		120	120	
			Motor Protection	_	Overload protection		
=		Soun	d Pressure Level (H)	dB(A)	52 53		
opu		Tube	Material	_	Inner Groove	Copper Tube	
Indoor Unit	Coil	1000	Diameter	mm	7	7	
⊒:	0011	Fin	Material	_	Alum	inum	
			No.of Rows/FPI	_	3/16	3/16	
		Coil	Area	Sqm	0.766	1.104	
	Dimen	sions	Height		365(385)	440(450)	
	(Outli		Width	mm	1460(1575)	1690(1785)	
	Packo	ige)	Depth		790(880)	870(985)	
	\	Weight(N	let/Gross)	kg	82/104	99/134	
			ration Control	_		Display + Remote Controller	
	Cond		Drainage(O.D)	mm	3		
		Air	Filter	_	Standard Washa	ble and Synthetic	
		Model	s	Indoor Unit	FGR20Pd/DNa-X(I)	FGR25Pd/DNa-X(I)	
	Models			Outdoor Unit	FGR20Pd/DNa-X(O)	FGR25Pd/DNa-X(O)	

		Model		Indoor Unit	FGR30Pd/DNa-X(I)	FGR40Pd/D(2)Na-X(I)	
		Model	5	Outdoor Unit	FGR30Pd/DNa-X(O)	FGR20Pd/DNa-X(O)×2	
			C 1:	Btu/h	102400	136500	
No	minal Cap	acity At	Cooling	kW	30	40	
	Rated ES	SP	Hantin a	Btu/h	112600	146700	
			Heating	kW	33	43	
Pos	war Canau	mantia n	Cooling	kW	11.3	15.4	
FO	wer Consu	прпоп	Heating	KVV	10.3	13.9	
	lunning Cu		Cooling	^	22.7	27.8	
r	tunning Ct	rreni	Heating	Α	20.7	26.4	
		Refrig	erant Type		R41	0a	
	Ref	rigerant (Charge	kg	9.5	6.4×2	
		Power	Supply	Ph/V/ Hz	1/220/50/60	3/380/50/60	
			Туре		Centrifugal / Direct C	Connection	
		Air flow		CFM	3060	4120	
			7 di 110 w		5200	7000	
	_	I	Input Power		900	1350	
	Fan	Rur	Running Current		4.9	2.7	
			Rated ESP		120	120	
			Notor Protection	_	Overload	protection	
_		Sound	d Pressure Level (H)	dB(A)	55	56	
ndo		Tube	Material	_	Inner Groove	Copper Tube	
Indoor Unit	Coil	TODE	Diameter	mm	7.94	9.52	
n:	Con	Fin	Material	_	Alum	inum	
			No.of Rows/FPI	_	3/16	3/16	
		Coil	Area	Sqm	1.70	0.864	
	Б:		Height		440(450)	650(670)	
	Dimer (Outline/		Width	mm	1690(1785)	1680(1800)	
	,	0 /	Depth		870(985)	900(1020)	
		Weight(N	et/Gross)	kg	105/145	175/210	
	Syst	em Oper	ation Control	_	Wired Controller with LCD [Display + Remote Controller	
	Con	densate D	rainage(O.D)	mm	3	0	
	Air Filter			_	Standard Washable and Synthetic		

Note: Nominal capacities are based on the follow conditions.

	Indoor	Outdoor
Cooling	DB: 27°C (80.6 °F) WB: 19°C (66.2 °F)	DB: 35°C (95 °F) WB: /°C (/ °F)
Heating	DB: 20°C (68 °F) WB: /°C (/ °F)	DB: 7°C (44.6 °F) WB: 6°C (42.8 °F)
Piping Length		7.5m

2.2 Cooling/Heating Capacity Correction

2.2.1 Cooling Capacity Correction

					Indoor air temp)		
≥	Outdoor	20.0℃ DB	23.0℃ DB	26.0℃ DB	27.0°C DB	28.0℃ DB	30.0℃ DB	32.0°C DB
Model	air temp (℃ DB)	14.0°C WB	16.0°C WB	18.0°C WB	19.0°C WB	20.0°C WB	22.0°C WB	24.0°C WB
	(C Db)	kW	kW	kW	kW	kW	kW	kW
	10	13.5	16.0	18.8	20.0	21.2	24.0	25.3
	12	13.5	16.0	18.8	20.0	21.2	24.0	24.8
	14	13.5	16.0	18.8	20.0	21.2	24.0	24.7
	15	13.5	16.0	18.8	20.0	21.2	23.8	24.3
	18	13.5	16.0	18.8	20.0	21.2	23.5	24.0
	20	13.5	16.0	18.8	20.0	21.2	23.2	23.5
	21	13.5	16.0	18.8	20.0	21.2	23.0	23.5
	23	13.5	16.0	18.8	20.0	21.2	22.7	23.0
FG	25	13.5	16.0	18.8	20.0	21.2	22.3	22.8
FGR20Pd/DNa-X	27	13.5	16.0	18.8	20.0	21.2	22.0	22.5
Pd/	29	13.5	16.0	18.8	20.0	21.0	21.7	22.2
D	31	13.5	16.0	18.8	20.0	20.8	21.3	21.8
α-×	33	13.5	16.0	18.8	20.0	20.5	21.0	21.5
	35	13.5	16.0	18.8	20.0	20.2	20.7	21.3
	37	13.5	16.0	18.8	19.5	20.0	20.5	21.0
	39	13.5	16.0	18.8	19.3	19.5	20.0	20.5
	41	13.5	16.0	18.8	19.3	19.5	20.0	20.3
	43	13.5	16.0	18.8	19.3	19.3	19.8	20.2
	45	13.5	16.0	18.5	19.0	19.2	19.7	20.0
	47	13.5	16.0	18.5	18.5	18.8	19.5	19.7
	48	13.5	16.0	18.2	18.5	18.7	19.3	19.5
	10	16.9	20.0	23.5	25.0	26.5	30.0	31.7
	12	16.9	20.0	23.5	25.0	26.5	30.0	31.0
	14	16.9	20.0	23.5	25.0	26.5	30.0	30.8
	15	16.9	20.0	23.5	25.0	26.5	29.8	30.4
	18	16.9	20.0	23.5	25.0	26.5	29.4	30.0
	20	16.9	20.0	23.5	25.0	26.5	29.0	29.4
	21	16.9	20.0	23.5	25.0	26.5	28.8	29.4
_	23	16.9	20.0	23.5	25.0	26.5	28.3	28.8
FGR25Pd/DNa-X	25	16.9	20.0	23.5	25.0	26.5	27.9	28.5
251	27	16.9	20.0	23.5	25.0	26.5	27.5	28.1
Pd/I	29	16.9	20.0	23.5	25.0	26.3	27.1	27.7
N N	31	16.9	20.0	23.5	25.0	26.0	26.7	27.3
×	33	16.9	20.0	23.5	25.0	25.6	26.3	26.9
	35	16.9	20.0	23.5	25.0	25.2	25.8	26.7
	37	16.9	20.0	23.5	24.4	25.0	25.6	26.3
	39	16.9	20.0	23.5	24.2	24.4	25.0	25.6
	41	16.9	20.0	23.5	24.2	24.4	25.0	25.4
	43	16.9	20.0	23.5	24.2	24.2	24.8	25.2
	45	16.9	20.0	23.1	23.8	24.0	24.6	25.0
	47	16.9	20.0	23.1	23.1	23.5	24.4	24.6
	48	16.9	20.0	22.7	23.1	23.3	24.2	24.4

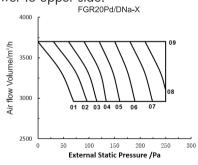
					Indoor air temp			
>	Outdoor	20.0°C DB	23.0°C DB	26.0°C DB	27.0°C DB	28.0°C DB	30.0°C DB	22 0°C DB
Model	air temp							32.0°C DB
<u> </u>	(°C DB)	14.0°C WB	16.0℃ WB	18.0°C WB	19.0℃ WB	20.0℃ WB	22.0°C WB	24.0°C WB
	10	kW	kW	kW	kW	kW	kW	kW
	10	20.3	24.0	28.3	30.0	31.8	36.0	38.0
	12	20.3	24.0	28.3	30.0	31.8	36.0	37.3
	14	20.3	24.0	28.3	30.0	31.8	36.0	37.0
	15	20.3	24.0	28.3	30.0	31.8	35.8	36.5
	18	20.3	24.0	28.3	30.0	31.8	35.3	36.0
	20	20.3	24.0	28.3	30.0	31.8	34.8	35.3
	21	20.3	24.0	28.3	30.0	31.8	34.5	35.3
	23	20.3	24.0	28.3	30.0	31.8	34.0	34.5
FGR30Pd/DNa-X	25	20.3	24.0	28.3	30.0	31.8	33.5	34.3
30P	27	20.3	24.0	28.3	30.0	31.8	33.0	33.8
d/p	29	20.3	24.0	28.3	30.0	31.5	32.5	33.3
Z	31	20.3	24.0	28.3	30.0	31.3	32.0	32.8
×	33	20.3	24.0	28.3	30.0	30.8	31.5	32.3
	35	20.3	24.0	28.3	30.0	30.3	31.0	32.0
	37	20.3	24.0	28.3	29.3	30.0	30.8	31.5
	39	20.3	24.0	28.3	29.0	29.3	30.0	30.8
	41	20.3	24.0	28.3	29.0	29.3	30.0	30.5
	43	20.3	24.0	28.3	29.0	29.0	29.8	30.3
	45 47	20.3	24.0 24.0	27.8 27.8	28.5	28.8	29.5 29.3	30.0 29.5
	48	20.3			27.8	28.3	29.3	
	10		24.0 32.0	27.3	27.8 40.0	28.0	48.0	29.3 50.7
	12	27.0 27.0	32.0	37.7 37.7	40.0	42.3 42.3	48.0	49.7
	14	27.0	32.0	37.7	40.0	42.3	48.0	49.7
	15	27.0	32.0	37.7	40.0	42.3	47.7	49.3
	18	27.0	32.0	37.7	40.0	42.3	47.7	48.0
	20	27.0	32.0	37.7	40.0	42.3	46.3	47.0
	21	27.0	32.0	37.7	40.0	42.3	46.0	47.0
	23	27.0	32.0	37.7	40.0	42.3	45.3	46.0
FO	25	27.0	32.0	37.7	40.0	42.3	44.7	45.7
FGR40Pd/D(2)Na-X	27	27.0	32.0	37.7	40.0	42.3	44.0	45.0
)Pd/	29	27.0	32.0	37.7	40.0	42.0	43.3	44.3
)D(2	31	27.0	32.0	37.7	40.0	41.7	42.7	43.7
) Z	33	27.0	32.0	37.7	40.0	41.0	42.0	43.0
×	35	27.0	32.0	37.7	40.0	40.3	41.3	42.7
	37	27.0	32.0	37.7	39.0	40.0	41.0	42.7
	39	27.0	32.0	37.7	38.7	39.0	40.0	41.0
	41	27.0	32.0	37.7	38.7	39.0	40.0	40.7
	43	27.0	32.0	37.7	38.7	38.7	39.7	40.7
	45	27.0	32.0	37.0	38.0	38.3	39.3	40.0
	47	27.0	32.0	37.0	37.0	37.7	39.0	39.3
	48	27.0	32.0	36.3	37.0	37.3	38.7	39.0
	40	27.0	02.0	00.0	07.0	07.0	00.7	07.0

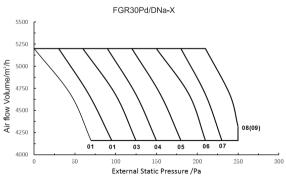
Technical Sales Guide Technical Sales Technical Sales Guide Technical Sales Guide Technical Sales Guide Sales Guide Sales Guide Technical Sales Guide Sales Sales Sales Guide Sales Guide

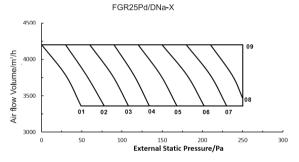
2.2.2 Heating Capacity Correction

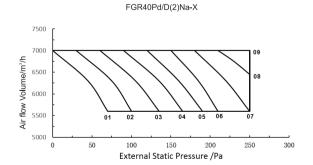
~	Outdoor air temp				Indoor	air temp		
Model	Outdoor	air temp	16.0℃ DB	18.0℃ DB	20.0℃ DB	22.0℃ DB	24.0°C DB	26.0℃ DB
<u> </u>	°C DB	°C WB	kW	kW	kW	kW	kW	kW
	-20	-20.2	12.3	12.3	12.3	12.3	12.3	12.3
	-15	-15.3	14.1	14.1	14.1	14.1	14.1	14.1
	-13	-13.4	15.0	15.0	15.0	15.0	15.0	14.1
	-11	-11.4	15.8	15.8	15.8	15.8	15.8	15.8
	-9	-9.5	15.8	15.8	15.8	15.8	15.8	15.8
	-7	-7.5	16.7	16.7	16.7	16.7	16.7	15.8
	-5	-5.6	17.6	17.6	17.6	17.6	17.6	17.6
-71	-2	-2.7	18.5	18.5	18.5	18.5	18.5	17.6
GR	0	-0.7	19.4	19.4	19.4	19.4	18.5	17.6
20Pa	2	1.2	21.1	21.1	21.1	20.2	18.5	17.6
Δ/P	4	3.1	21.1	21.1	21.1	20.2	18.5	17.6
FGR20Pd/DNa-X	7	6	22.0	22.0	22.0	20.2	18.5	17.6
~	9	7.9	22.9	22.9	22.0	20.2	18.5	17.6
	11	9.8	23.8	23.8	22.0	20.2	18.5	17.6
	13	11.8	24.6	23.8	22.0	20.2	18.5	17.6
	15	13.7	25.5	23.8	22.0	20.2	18.5	17.6
	17	15.6	26.4	23.8	22.0	20.2	18.5	17.6
	19	17.5	26.4	23.8	22.0	20.2	18.5	17.6
	21	19.5	26.4	23.8	22.0	20.2	18.5	17.6
	24	22.3	26.4	23.8	22.0	20.2	18.5	17.6
	-20	-20.2	15.4	15.4	15.4	15.4	15.4	15.4
	-15	-15.3	17.6	17.6	17.6	17.6	17.6	17.6
	-13	-13.4	18.7	18.7	18.7	18.7	18.7	17.6
	-11	-11.4	19.8	19.8	19.8	19.8	19.8	19.8
	-9	-9.5	19.8	19.8	19.8	19.8	19.8	19.8
	-7	-7.5	20.9	20.9	20.9	20.9	20.9	19.8
	-5	-5.6	22.0	22.0	22.0	22.0	22.0	22.0
Ţ	-2	-2.7	23.1	23.1	23.1	23.1	23.1	22.0
FGR25P	0	-0.7	24.2	24.2	24.2	24.2	23.1	22.0
5Pc	2	1.2	26.4	26.4	26.4	25.3	23.1	22.0
d/DNa-X	4	3.1	26.4	26.4	26.4	25.3	23.1	22.0
\d->	7	6	27.5	27.5	27.5	25.3	23.1	22.0
	9	7.9	28.6	28.6	27.5	25.3	23.1	22.0
	11	9.8	29.7	29.7	27.5	25.3	23.1	22.0
	13	11.8	30.8	29.7	27.5	25.3	23.1	22.0
	15	13.7	31.9	29.7	27.5	25.3	23.1	22.0
	17	15.6	33.0	29.7	27.5	25.3	23.1	22.0
	19	17.5	33.0	29.7	27.5	25.3	23.1	22.0
	21	19.5	33.0	29.7	27.5	25.3	23.1	22.0
	24	22.3	33.0	29.7	27.5	25.3	23.1	22.0

					Indoor	air temp		
Model	Outdoor	air temp	16.0℃ DB	18.0°C DB	20.0℃ DB	22.0°C DB	24.0°C DB	26.0℃ DB
<u> </u>	°C DB	°C WB	kW	kW	kW	kW	kW	kW
	-20	-20.2	18.5	18.5	18.5	18.5	18.5	18.5
	-15	-15.3	21.1	21.1	21.1	21.1	21.1	21.1
	-13	-13.4	22.4	22.4	22.4	22.4	22.4	21.1
	-11	-11.4	23.8	23.8	23.8	23.8	23.8	23.8
	-9	-9.5	23.8	23.8	23.8	23.8	23.8	23.8
	-7	-7.5	25.1	25.1	25.1	25.1	25.1	23.8
	-5	-5.6	26.4	26.4	26.4	26.4	26.4	26.4
П	-2	-2.7	27.7	27.7	27.7	27.7	27.7	26.4
GR	0	-0.7	29.0	29.0	29.0	29.0	27.7	26.4
30Pc	2	1.2	31.7	31.7	31.7	30.4	27.7	26.4
FGR30Pd/DNa-X	4	3.1	31.7	31.7	31.7	30.4	27.7	26.4
√α->	7	6	33.0	33.0	33.0	30.4	27.7	26.4
^	9	7.9	34.3	34.3	33.0	30.4	27.7	26.4
	11	9.8	35.6	35.6	33.0	30.4	27.7	26.4
	13	11.8	37.0	35.6	33.0	30.4	27.7	26.4
	15	13.7	38.3	35.6	33.0	30.4	27.7	26.4
	17	15.6	39.6	35.6	33.0	30.4	27.7	26.4
	19	17.5	39.6	35.6	33.0	30.4	27.7	26.4
	21	19.5	39.6	35.6	33.0	30.4	27.7	26.4
	24	22.3	39.6	35.6	33.0	30.4	27.7	26.4
	-20	-20.2	24.6	24.6	24.6	24.6	24.6	24.6
	-15	-15.3	28.2	28.2	28.2	28.2	28.2	28.2
	-13	-13.4	29.9	29.9	29.9	29.9	29.9	28.2
	-11	-11.4	31.7	31.7	31.7	31.7	31.7	31.7
	-9	-9.5	31.7	31.7	31.7	31.7	31.7	31.7
	-7	-7.5	33.4	33.4	33.4	33.4	33.4	31.7
	-5	-5.6	35.2	35.2	35.2	35.2	35.2	35.2
FGR40Pd/D(2)Na-X	-2	-2.7	37.0	37.0	37.0	37.0	37.0	35.2
₹40F	0	-0.7	38.7	38.7	38.7	38.7	37.0	35.2
J/Pc	2	1.2	42.2	42.2	42.2	40.5	37.0	35.2
0(2)1	4	3.1	42.2	42.2	42.2	40.5	37.0	35.2
Δ _{α-} >	7 9	6	44.0	44.0	44.0	40.5	37.0	35.2
^		7.9	45.8	45.8	44.0	40.5	37.0	35.2
	11	9.8	47.5	47.5	44.0	40.5	37.0	35.2
	13 15	11.8 13.7	49.3 51.0	47.5 47.5	44.0 44.0	40.5 40.5	37.0 37.0	35.2 35.2
	17	15.6	52.8	47.5	44.0	40.5	37.0	35.2
	17	17.5	52.8	47.5	44.0	40.5	37.0	35.2
	21	17.5	52.8	47.5	44.0	40.5	37.0	35.2
	24	22.3	52.8	47.5	44.0	40.5	37.0	35.2
	24	22.3	32.0	47.5	44.0	40.5	37.0	33.2

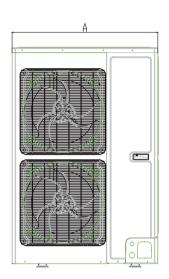


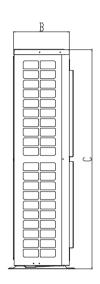

3 Electrical Specifications

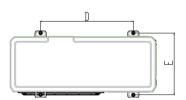

Model	Power Supply	Circuit Breaker Capacity (A)	Minimum Sectional Area of Ground Wire (mm²/AWG)	Minimum Sectional Area of Power Cord (mm²/AWG)
FGR20Pd/DNa-X(O)	380-415V 3N~ 50/60HZ	20	1×2.5	4×2.5
FGR20Pd/DNa-X(I)	220V~50/60HZ	10	1×1.5	2×1.5
FGR25Pd/DNa-X(O)	380-415V 3N~ 50/60HZ	25	1×2.5	4×2.5
FGR25Pd/DNa-X(I)	220V~50/60HZ	10	1×1.5	2×1.5
FGR30Pd/DNa-X(O)	380-415V 3N~ 50/60HZ	32	1×4.0	4×4.0
FGR30Pd/DNa-X(I)	220V~50/60HZ	10	1×1.5	2×1.5
FGR40Pd/D(2)Na-X(I)	380-415V 3N~ 50/60HZ	10	1×1.5	4×1.5


4 Fan Characteristics

When this unit is installed, select the static pressure according to the actual air volume. There're 9 static pressure notches for selection. Please refer to the Installation, Debugging and Maintenance Manual for the adjustment method for the static pressure. The curve diagram between air volume and static pressure is as below. The corresponding static pressure is from notch 1 to notch 9 for the curve from lower to upper side.

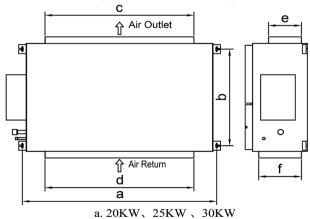



5 Dimensional Data and Unit Installation Space Requirements



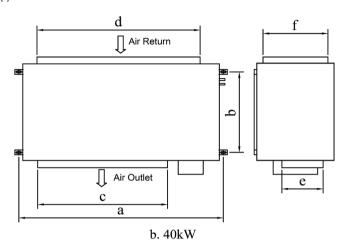
5.1 Dimensional Data

The outdoor unit:



Model	Α	В	С	D	Е
FGR20Pd/DNa-X(O)	940	320	1430	632	350
FGR25Pd/DNa-X(O)	940	460	1615	610	486
FGR30Pd/DNa-X(O)	940	460	1615	610	486

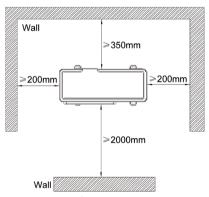
The indoor unit:

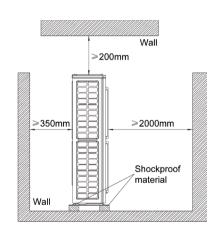

 $FGR20Pd/DNa-X(I) \ \ FGR25Pd/DNa-X(I) \ \ FGR30Pd/DNa-X(I):$

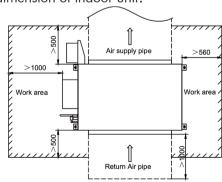
Technical Sales Guide

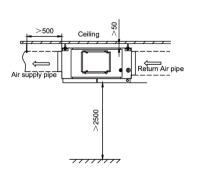
Sales Guide

FGR40Pd/D(2)Na-X(I):

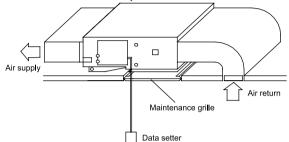

Unit: mm

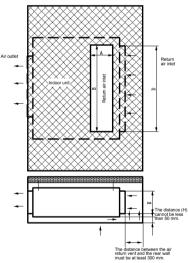

Model	а	b	С	d	е	f
FGR20Pd/DNa-X(I)	1334	632	990	1150	192	363
FGR25Pd/DNa-X(I)	1541	705	980	1350	270	420
FGR30Pd/DNa-X(I)	1541	705	980	1350	270	420
FGR40Pd/D(2)Na-X(I)	1730	760	1160	1450	360	560


5.2 Installation space requirements


Installation dimension of outdoor unit:

Installation dimension of indoor unit:




5.3 Precautions on the indoor unit design

The following aspects must be specially noted in consideration of the indoor unit location:

- (1) The location should satisfy the optimal airflow organization for air conditioner in the actual project, and implement the most uniform distribution of temperature.
- (2) Avoid mixed use of air ducts for air supply and air return in different air conditioning areas.
- (3) When the indoor unit in the air supply mode of air duct is selected, it is preferred to adopt the rear air return mode for the unit to further efficiently reduce the air return noise of the unit.

- (4) In locating, consider whether air return of the unit will be affected. For the indoor unit in the air supply mode of air duct, the air return frame must be more than 300 mm away from the back wall (rear air return mode) or other barriers.
- (5) If the unit uses the rear air return mode and the ceiling uses the air return mode directly below the unit, the distance between the unit bottom and the ceiling must be over 50 mm. Meanwhile, the effective circulation area between the unit bottom and the ceiling cannot be smaller than the air return vent area of the unit. For example:

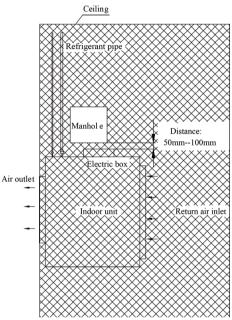
Air return area of the unit: $S1 = D \times E$

Air return vent circumference of the ceiling: $L = 2 \times (A+B)$

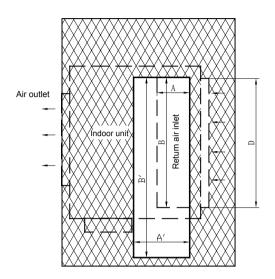
Effective air return area of the ceiling: $S2 = L \times H$

S2 cannot be smaller than S1. The distance H between the ceiling and the unit cannot be smaller than 50 mm.

- (6) No barrier blocking air flow should exist at the air inlet or outlet of the indoor unit. The indoor unit should be installed at a position 2.3 m higher than the floor.
- (7) For the indoor unit with the rated Cooling capacity greater than 5.6 Kw, an air supply duct should be additionally added, and the air duct and air outlet should be set properly to reduce noises.
- (8) A sufficient maintenance space should be reserved in locating the unit.



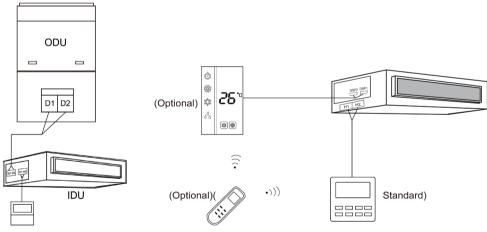
5.4 Locating the manhole and air return vent


In addition to consideration of the sufficient maintenance space to be reserved during unit locating, it is also important to locate the manhole. If manhole locating is improper, it will also make future maintenance and repair more difficult.

The manhole size can accommodate the shoulder width of a normal adult. It cannot be smaller than $450 \text{ mm} \times 450 \text{ mm}$. Usually the indoor unit in the air supply mode of air duct is located at the electric box side of the unit, the distance from the electric box is 50 mm to 100 mm, and maintenance of the pipeline part must also be considered. The pipeline maintenance position of the pipeline is mainly considered for the air raise type indoor unit, so the manhole can be located at a position that ensures the distance between one edge and the connection pipe is 200 mm to 250 mm. The schematic diagram is shown below:

The air return vent position must also be considered for the indoor unit in the air supply mode of air duct. The air return vent is responsible for air return of the unit, and also used to complete maintenance of the indoor fan motor and filter screen. Therefore, in addition to meeting the air return design requirements mentioned above, there is a must to ensure the requirement for replacing the motor and filter screen.

- (1) Do not set the air return vent of the unit near the door, toilet or kitchen; otherwise problems such as condensation and peculiar smell may be caused.
- (2) The length direction of the air return vent cannot be smaller than 2/3 of the air return vent length of the unit.
- (3) If the air return vent is set directly behind the unit, the distance between its position and the unit cannot be greater than 300 mm. The width direction of the air return vent cannot be smaller than 200 mm.
- (4) For the design of also using the air return vent as a manhole for the electric box, the maintenance position should also be reserved at the electric box side according to the above principle. At the same time, it is required to consider whether the position of the air return vent can ensure easy removal and replacement of the fan motor and filter screen. Therefore, the air return vent should be enlarged to 1.5 to 2 times of the original circulation area according to the actual conditions and on the basis of satisfying the air volume design. The schematic diagram is shown below:



Original air return vent area: $S = A \times B$ Currently air return vent area: $S' = A' \times B'$

 $S' \ge (1.5 \sim 2.0)S$

Requirements for Communication Mode

The indoor unit and the wired controller are connected following modes, which are respectively shown in Figure below:

Technical Sales Guide

Technical Guide

Technical Sales Guide

Technical Sales Guide

Technical Sales Guide

Technical Technical Technical Technical Sales Guide

Technical Technical Technical Technical Technical Sales Guide

Technical Technical Technical Technical Technical Sales Guide

Technical Technical Sales Guide

Technical Technical Technical Technical Sales Guide

Technical Technical Sales Guide

Technical Sales Guide Sales Guide Sales Guide

Technical Sales Guide Sales Guide Sales Guide

Technical Sales Guide Sales Guide Sales Guide Sales Guide

7 ACCESSORIES

Accessories name	Model name	Standard	Optional	Prepared by the user
Wired controller	XK46	$\sqrt{}$		
Wireless controller	YAP1F		\checkmark	
Remote controller for debugging	ME40-00/B		\checkmark	
Communication cable				\checkmark
Connection wire of the wired controller				\checkmark
Power cord				\checkmark
Duct pipe and the connector				\checkmark
Insulation material for the duct pipe				$\sqrt{}$
Filter screen		$\sqrt{}$		
Connecting pipeline between indoor and outdoor units				\checkmark
Drain pipe				\checkmark

8 Sales Areas

No.	Product Series	Export to European	Other areas
1	Duct Type Split Air Conditioner Inverter Series	\checkmark	\checkmark

 $\sqrt{\text{Indicates the product can be exported to this area.}}$

imesIndicates the product can't be exported to this area.

Gree Electric Appliances, Inc. of Zhuhai, founded in 1991, is the world's largest air conditioner enterprise integrating R&D, manufacturing, marketing and services. Technology Innovation and quality are always our priority. With efforts of thousands of Gree's engineers, we own more than 3500 patents for our products.

Nowadays, we have 7 production bases in Zhuhai, Chongqing, Hefei and Zhengzhou(China), as well as Brazil, Pakistan and Vietnam, with annual production capacity of 30 million sets of residential air conditioners and 4 million sets of commercial air conditioners.

With the installation of Gree commercial air conditioners in important projects at home and abroad like Media Village for 2008 Beijing Olympic Games, Stadiums for 2010 World Cup in South Africa, as well as India Telecom base station, Gree commercial air conditioners are ready to develop steadily to every corner in the world, to present a more comfortable and harmonious working environment and family atmosphere.

Add: West Jinji Rd, Qianshan Zhuhai, Guangdong, China 519070

Tel: (+86-756)8614883 Fax: (+86-756)8614998 Http://www.gree.com Email: gree@gree.com.cn

For continuous improvement in the products, Gree reserves the right to modify the product specification and appearence in this manual without notice and without incurring and obligations.